n-Gram Models of Morphological Derivations

Aniello De Santo and Alëna Aksenova
Department of Linguistics @ SBU

Introduction

Computational linguistics is concerned with modeling natural language, and modeling the structure of words – morphology – is an essential part of it. Morphology studies what different morphemes mean, how they apply to the stem, and so on. For example, *of* is a morpheme that can apply to a root node in order to derive its past tense *walked*.

Here we present a modification of the traditional n-gram approach to modeling language that allows the following:

- capture ambiguity, in cases such as undeckable;
- more efficiently limit behavior of morphemes.

This will result in better semantic extraction while parsing, and will improve our understanding of possible morpheme combinations.

1 n-Grams Models in Natural Language

Widely known in natural language processing, n-gram models can be used to decide whether a word belongs to a language or not, by banning specific substrings of length n listed in a grammar.

Example 1: Intercovalic voicing in German

- in **German**, *Af* is realized as [ʔ] between two vowels:
 1. Faser → [fazər] fibre
 2. reisen → [rɛi.zen] to travel
- other consonants are unaffected:
 3. Wasser → [wa.zer] water
 4. reiste → [ri.ztɛ] traveled
- banned 3-grams:

 - [asə, iəsə, eːsə, isə, iəs, ...]
 - [ɛ i ɛ n]

Example 2: Word-final devoicing in German

- in **German**, *Af* is realized as [ʔ] at the end of the word:
 1. Kind → [kind] child
 2. Kinder → [ki.nder] children
- banned 2-grams:

 - [dvə]
 - [v n, v n, v n]

2 Limits

A surprising number of natural language patterns can be captured by these very simple models. But not all patterns are well-behaved.