
Stony Brook University

Qualifying Paper

Department of Linguistics

kist package: documentation

Author:
Alëna Aksënova

Advisor:
Thomas Graf

April 24, 2018

Contents

1 Introduction 2

2 Relevance 3
2.1 Linguistics . 3
2.2 Neural networks . 4
2.3 Robotics . 4

3 Theoretical background 4
3.1 Strictly local . 5
3.2 Tier-based strictly local . 6
3.3 Strictly piecewise . 7

4 Quick start guide 7
4.1 Installing the package . 7
4.2 Overview of the package . 8
4.3 Quick examples . 10
4.4 Detailed examples . 12

4.4.1 SL class . 12
4.4.2 TSL class . 14
4.4.3 SP class . 15

5 Implementation 16
5.1 Architecture . 16
5.2 Attributes . 18
5.3 Methods . 20

5.3.1 SL classes . 20
5.3.2 TSL classes . 25
5.3.3 SP classes . 27
5.3.4 FSM class . 29
5.3.5 FSM family class . 30

6 Conclusion and future work 30

1

Abstract

In this qualifying paper, I present a kist toolkit that allows one to
work with formal language classes of the subregular hierarchy. From
one side, we already know that these classes accommodate most nat-
ural language patterns. From the other side, it is shown that learning
these classes can be done in polynomial time and data. However, there
had been no implementation of the subregular tools yet, therefore de-
velopment of this toolkit is a necessary and natural step.

1 Introduction

For a long time researchers working with the subregular language classes
were forced to perform such basic operations as grammar extraction, sample
generation, and well-formedness detection manually. The package kist (kist
implements a subregular toolkit) that I am currently developing aims to
simplify their life by providing these functions for different language classes
in one place. It is implemented in Python (a language that is widely used in
the scientific community), and the project is fully open source. That makes
it available to anybody who faces the need in subregular tools.

The formal classes of subregular languages are widely discussed in formal
language and linguistic literature nowadays. The idea of splitting the class
of regular languages into the subregular hierarchy is not new, and was in-
troduced by McNaughton and Papert (1971) several decades ago. However,
not until recently this class was shown to be a good fit for natural language
phenomena. Heinz (2011a,b) showed that several classes within the subreg-
ular hierarchy can accommodate natural language phonology. Follow-up by
other researchers extended this view to other parts of language, such as mor-
phology (Aksënova et al., 2016), syntax (Graf and Heinz, 2016), and even
semantics (De Santo et al., 2017). Apart from linguistics, these classes found
applications in the areas of neural learning (Avcu et al., 2017) and robotics
(Rawal et al., 2011) as well.

These results encouraged a large amount of research on formal properties
of subregular languages and their possible applications. However, manually
designing grammars and languages is very difficult and risky, because even
a minor mistake can lead to a completely different result. Moreover, it is
impossible to generate large samples of languages and grammars by hand.
Therefore, there should be an open-source toolkit that will supply researchers

2

https://github.com/loisetoil/slp

with necessary instruments to simplify their work with subregular languages.
kist toolkit provides these tools.

The next sections discuss the following points:
2. relevance of the package in different areas of research;
3. theoretical background behind this package;
4. installation guidelines and simple examples of use;
5. details on the architecture and implementation of the package;
6. conclusions and following steps in the development of the package.

2 Relevance

In this section, I show the importance of the subregular languages in different
areas of research. The main ones are analysis of linguistic patterns and
exploring limitations on their cognitive complexity, conducting controlled
experiments with neural networks, and robotics.

Each of these areas requires generating lots of data or grammars of cer-
tain types, or analysis of extensive data samples. While it is achievable to
manually go over a small data sample and create a subregular account for it,
it becomes nearly impossible when larger samples are involved.

2.1 Linguistics

Phonology Subregular languages are widely applied to different parts of
linguistics. Most of the phonological patterns can be captured strictly locally
(Chandlee and Heinz, 2018). Heinz et al. (2011) show that numerous long-
distance phenomena such as harmonies or long-distance dissimilations can
be modeled using TSL and/or SP grammars (see (Heinz, 2015; De Santo
and Graf, 2017; Aksënova and Deshmukh, 2018) for surveys and extensions).
For the discussion of learnability of different types of harmonic patterns,
see (Gainor et al., 2012). Additionally, Rogers (2018) shows that the waste
majority of stress patterns are subregular as well.

Morphology There are also multiple application of subregular languages
to morphotactics and morphology. For example, Aksënova et al. (2016) claim
that morphotactics is at most TSL, and also show typological gaps that are
found if the complexity of the pattern is beyond regular. Chandlee (2017)
concludes that morphology can be captured via subregular functions, and

3

https://github.com/loisetoil/slp

Aksënova and De Santo (in press) show that morphological derivations are
in fact strictly local, even if overt positioning of morphemes seems to be more
complicated.

Semantics Subregular approach found its applications even in semantics.
According to De Santo et al. (2017), most generalized quantifiers seem to
be subregular as well. Additionally, monomorphemic quantifiers are at most
TSL (Graf, 2017).

Syntax The subregular approach is currently being extended to accom-
modate syntax as well, see (Graf and Heinz, 2016) for tree-based approaches.

2.2 Neural networks

The well-studied classes of subregular languages can also be used for con-
ducting controlled experiments with neural networks. Avcu et al. (2017) did
so by using the language classes at the very bottom of the subregular hier-
archy, namely strictly local and strictly piecewise. The results of learning
using samples from formal languages tell more than when natural language
data is used: the nature, as well as the complexity of target patterns, can be
controlled.

2.3 Robotics

Rawal et al. (2011) show that the subregular languages can be used to model
robotic behavior. The formal class determines the properties and complexity
of the system, and also predicts which computational tools it requires. For
such tasks as well, manual extraction of patterns from the given data can be
unnecessarily complicated.

3 Theoretical background

The subregular hierarchy (cf. Figure 1) is formed by limiting the power of
regular languages in different ways. For example, the class of strictly local
(SL) grammars evaluates substrings of a certain length, tier-based strictly
local (TSL) grammars capture local dependencies among certain symbols
while ignoring the rest, locally testable (LT) grammars can check whether
an n-gram was used in a string or not, and strictly piecewise (SP) grammars
operate with subsequences of a limited length.

4

Regular

SF

LTT

LT

SL

PT

SP

TSL

Figure 1: The subregular hierarchy

The kist toolkit currently implements strictly local, tier-based strictly
local and strictly piecewise grammars that are highlighted on the Figure 1.
In this section, I discuss these three subregular classes.

3.1 Strictly local

The class of strictly local (SL) languages is not different from n-gram models
that are widely used in NLP. The core idea behind this class is to evaluate a
string based on the n-grams that are contained in the given string. The posi-
tive SL grammars list allowed substrings of a language, whereas the negative
ones contain the prohibited substrings.

For the alphabet Σ = {a, b}, consider the following language: ab, abab,
ababab, etc. It is easy to notice, that the “rules” of this language require
the well-formed words to start with a, end with b, and to alternate the
symbols. Exactly the same generalization can be formulated using strictly
2-local grammar. The locality window k = 2 means that well-formedness of a
symbol in each position can be decided based on information about the pre-
ceding symbol only. The following 2-SL grammar GPSL = (oa, ab, ba, bn)1

describes the language above. Strings such as ab or abab are allowed in this
language, whereas *abb or *bab are not: the former one contains the illicit
*bb substring, and the latter one starts with a b, i.e. contains *ob. The

1The delimiters o and n are used to indicate the beginning and the end of a string,
respectively. The empty string is then denoted as on.

5

corresponding negative grammar lists all prohibited strings of the same lan-
guage. GNSL = (*ob, *aa, *bb, *an) is a negative SL grammar that defines
the same language as above.

SL grammars capture local dependencies by blocking or allowing sub-
strings of a certain length. As the result, it is not possible to capture a
long-distance dependency with a SL grammar: if the distance among two
dependent units is unbounded, the locality can never be achieved.

As for the learning result, it is trivial because it is equivalent to mem-
orizing all possible sequences of a certain length, or finding out which ones
were never observed in the data.

3.2 Tier-based strictly local

The subregular class of tier-based strictly local (TSL) languages is a proper
extension of the SL one. TSL grammar follows the same logic: it evaluates
strings by looking for allowed or prohibited substrings. However, instead of
evaluating the whole string, TSL grammars operate over tiers, see (Heinz
et al., 2011). Every symbol of a string is projected on a tier only if it is
present in the tier alphabet T .

Consider the following language: b, aaab, aaba, baa. Its alphabet is the
same as before, Σ = {a, b}. This language can be described as follows: a
might be present or not in the word, but there must always be a single b.
The idea of ignoring the symbol distribution which is not important for the
language is the key idea behind the TSL grammars. For the language that
was presented above, the distribution of a is not important, therefore only b
is included in the tier alphabet, T = {b}. Then over the tier, the positive 2-
local grammar GPTSL = (ob, bn) and the negative one GNTSL = (∗on, ∗bb)
describe the desired generalization. The words aabaaa or abaa are well-
formed, whereas *aaaa or *bab are not: over the tier, they contain the banned
bigrams *on and *bb, respectively. For a visual example, cf. Figure 2.

The core idea behind TSL languages is to capture long-distance depen-
dencies in a local fashion; namely, by making them local over the tier.

The learning algorithm for TSL languages kTSLIA (tier-based strictly
k-local inference algorithm) is designed by Jardine and McMullin (2017).
It first learns the tier alphabet by detecting the set of symbols that exhibit
some sort of dependency. When the tier is learned, the algorithm proceeds to
learning SL grammar over the tier images of the input dataset. The algorithm
works in the polynomial time from positive data only.

6

o a b a a n

o b n
okabaa

o b a b n

o b b n
*bab

Figure 2: Examples of TSL evaluation

3.3 Strictly piecewise

The class of strictly piecewise (SP) languages differs from SL and TSL by the
relation defined for the elements of the grammar. If before the defined rela-
tion was successor, i.e. immediate adjacency, SP class employs the precedence
relation, see Fu et al. (2011).

As an example, consider the negative SP grammar GNSP = {∗bb}. Before,
in the SL interpretation, this limitation meant do not have two b adjacent
to each other. However, under the perspective of SP, it means that b cannot
follow another b. With Σ = {a, b}, examples such as aaaaabaa and aaa are
well-formed, whereas the ones as *aaabbaa or *baaaaaab are not. As in the
previous example, the window size of this grammar is 2.

The main intuition behind this class is allowing or prohibiting subse-
quences of a certain length.

As for the learning this class of languages, ultimately it is just the ex-
traction of possible or impossible k-piecewise subsequences. The easy way
to represent an acceptor for the SP languages, is to construct a family of
automata of the appropriate type, for the procedure and explanations refer
to Heinz and Rogers (2013).

4 Quick start guide

In this section, I show how to install the kist package, and also provide a
short example of its use.

4.1 Installing the package

Python version
Please make sure that you are running Python 3, version 3.6.3 or later.

7

Downloading the code
Click the following link and download the code, or clone the repository:
https://github.com/loisetoil/slp.

Checking dependencies
Make sure that you have the following packages installed:
• itertools (for permutation-related tools)
• random (for random selection)
• typing (for variable-type annotations)

Running the toolkit2

In the terminal, move the location to the slp folder, and run main.py file in
the interactive mode.

1 $ cd ˜/ s l p
2 $ python3 − i main . py

4.2 Overview of the package

In this package, one can find learners, scanners, and sample generators for
positive and negative SL, TSL and SP grammars. The following snippet of
the code shows how to initialize grammars of each type.

1 >>> p s l = PosSL () # p o s i t i v e SL grammar
2 >>> n s l = NegSL () # negat ive SL grammar
3 >>> p t s l = PosSL () # p o s i t i v e TSL grammar
4 >>> n t s l = NegSL () # negat ive TSL grammar
5 >>> psp = PosSL () # p o s i t i v e SP grammar
6 >>> nsp = NegSL () # negat ive SP grammar

(T)SL classes
The attributes defined for SL classes are the following:
• alphabet: a list of symbols that are used in the language.

Default value is not given, but can be extracted from the grammar or
the data.
• grammar: a list of banned/allowed n-grams.

Can be extracted from the data.
• k: locality window of the grammar.

The default value is 2.

2In future, the package will be available via pip.

8

https://github.com/loisetoil/slp

• data: well-formed strings on the language.
Required if the grammar needs to be extracted.
• edges: start and end markers.

The default value is [‘>’, ‘<’].
• data sample: sample that is generated by the grammar.

Filled after obj.generate sample(n, rep) is called.
• fsm: Finite State Machine (FSM) that corresponds to the grammar.

It is constructed when the grammar is learned.
Basically, the only necessary arguments are grammar or data, because the
latter one is required in order to extract the former one. By default, the
locality window is set to 2, but this value can be changed.

The main available methods are the following:
• obj.learn(): extracts the grammar based on the data.

Requires the data to be provided.
• obj.scan(string): scans the given string.

The string is required.
• obj.generate sample(n=10, rep=True): generates data sample.

The argument n is the number of examples to be generated, this number
is set to 10 by default. Another argument rep is the switch that allows
or prohibits the generated data items to be repeated By default this
value is set to True, i.e. it allows for repetitions.
• obj.clean(): cleans the grammar.

Removes “useless” n-grams from the grammar.
• obj.change polarity(): changes the polarity of the grammar.

The TSL classes have all the attributes and methods listed above. The
only difference is the additional attribute tier that is defined for PosTSL

and NegTSL classes. In tier, the tier items are stored. If the grammar is
provided, the tier is required as well; and if the grammar is being extracted,
the tier is also learned.

SP classes
The attributes defined for SP classes are the following:
• alphabet: a list of symbols that are used in the language.

The default value is not given, but can be extracted from the grammar
or the data.
• grammar: a list of banned/allowed n-piecewise subsequences.

Can be extracted from the data.

9

• k: window size of the grammar.
The default value is 2.
• data: well-formed strings on the language.

Required if the grammar needs to be extracted.
• data sample: sample that is generated by the grammar.

Filled after obj.generate sample(n, rep) is called.
• fsm: FSM family that corresponds to the grammar.

Constructed when the grammar is learned.
Note that there is no attribute edges, because SP grammars operate with
the precedence relation instead of the successor, therefore providing the edges
will not introduce any new information.

The main available methods are the following:
• obj.learn(): extracts the grammar based on the data.

Requires the data to be provided.
• obj.scan(string): scans the given string.

The string is a required argument.
• obj.generate sample(n=10, rep=False): generates data sample.

The argument n is the number of examples to be generated, this number
is set to 10 by default. Another argument rep is the switch that allows
or prohibits the generated data items to be repeated. By default this
value is set to True, i.e. it allows for repetitions.
• obj.change polarity(): changes the polarity of the grammar.

4.3 Quick examples

To make sure that all steps indicated in the previous subsection went well,
one can run the following examples. After providing the code snippet, I
comment on what every line does. More details on the meaning of methods
and attributes are given in Section 5.

Learning SL grammar:

1 >>> p s l = PosSL ()
2 >>> p s l . k = 2
3 >>> p s l . data = [‘ abab ’ , ‘ ababab ’]
4 >>> p s l . l e a r n ()
5 >>> p s l . grammar
6 [(‘ b ’ , ‘ a ’) , (‘ > ’ , ‘ a ’) , (‘ b ’ , ‘< ’) , (‘ a ’ , ‘b ’)]

10

The class of positive SL grammar is being instantiated on the line 1.
Line 2 indicates that the locality window of the desired grammar is 2. The
data is provided further on the line 3. Line 4 calls the obj.learn() method
that extracts the grammar based on the given data and the k-value. The
next line calls the grammar attribute, and line number 6 shows the extracted
grammar3.

Scanning with a TSL grammar:

1 >>> n t s l = NegTSL ()
2 >>> n t s l . a lphabet = [‘ a ’ , ‘b ’]
3 >>> n t s l . grammar = [(‘ b ’ , ‘b ’)]
4 >>> n t s l . t i e r = [‘ b ’]
5 >>> n t s l . scan (‘ aabaaba ’)
6 False
7 >>> n t s l . scan (‘ aaaabaa ’)
8 True

The first line initializes negative TSL grammar. Line 2 defines its al-
phabet. The grammar *bb is given on the line 3, and the tier is provided
afterwards. As the result, if we scan the string aabaaba, it is rejected due to
the *bb constraint over the tier. But the string aaaabaa is well-formed with
respect to the grammar, and therefore accepted.

Generating sample with a SP grammar:

1 >>> nsp = NegSP ()
2 >>> nsp . a lphabet = [‘H’ , ‘L ’]
3 >>> nsp . k = 3
4 >>> nsp . grammar = [(‘H’ , ‘L ’ , ‘H’)]
5 >>> nsp . generate sample ()
6 >>> nsp . data sample
7 [‘ ’ , ‘LLH’ , ‘LLHHL’ , ‘LL ’ , ‘HLL’ , ‘LLHH’ , ‘L ’ , ‘LHL’ , ‘HL’ , ‘H’]

A negative SP grammar is initialized on line 1. Lines 2 and 3 define
the alphabet and the locality of the grammar. The restriction *HLH does
not allow L to appear in-between two H.4 The obj.generate sample(n, rep)
is called without any arguments, therefore, by default, 10 examples without

3The n-grams are represented as tuples and not simply as strings in order to be able to
operate not only with single symbols as the elements of the alphabet. For example, such
implementation allows to use morphemes or words as the smallest units.

4One might see in this example the familiar pattern of the unbounded tonal plateauing
that is a famous example of a SP process in phonology; see Jardine (2016) for the discussion
of computational properties of tonal patterns.

11

repetitions are generated. The data sample attribute is called on the line 6,
and the last line demonstrates the generated data.

4.4 Detailed examples

Here, I provide more examples of kist toolkit’s applications. In every sub-
section, one can find the exhaustive list of calls of the methods defined for
SL, TSL and SP language classes. Please refer to the next section for the
implementation-related details.

4.4.1 SL class

In order to initialize a SL grammar, the user needs to choose the class of the
desired polarity. The attributes that can be specified are alphabet, grammar,
k (the default value is 2), data, and edges (the default value is [‘>’, ‘<’]).
For example, below I initialize positive SL grammar.

1 >>> p s l = PosSL ()
2 >>> p s l . data = [‘ abab ’ , ‘ ab ’]
3 >>> p s l . k = 2

To extract the alphabet that is used in the data or in the grammar, the
obj.extract alphabet() method can be executed.

1 >>> p s l . e x t r a c t a l p h a b e t ()
2 >>> p s l . a lphabet
3 [‘ a ’ , ‘b ’]

The method obj.learn() extracts grammar based on the given data.

1 >>> p s l . l e a r n ()
2 >>> p s l . grammar
3 [(‘ > ’ , ‘ a ’) , (‘ b ’ , ‘< ’) , (‘ a ’ , ‘b ’) , (‘ b ’ , ‘ a ’)]

In order to decide the well-formedness of a string with regards to the
given grammar, obj.scan(string) method can be used with a string provided
as the argument. For example, ababab can be generated by the grammar
extracted earlier, but *aba cannot because it contains the illicit bigram *an.

1 >>> p s l . scan (‘ ababab ’)
2 True
3 >>> p s l . scan (‘ aba ’)
4 False

12

If the user-provided grammar contains useless n-grams and needs to be
cleaned, the obj.clean() method can do it. It works by converting the gram-
mar to the corresponding finite state machine (FSM), trimming its transi-
tions, and then converting it back to the list of n-grams. In the grammar
provided below, the bigram bc is useless, because it cannot lead to the end
of the string.

1 >>> p s l = PosSL ()
2 >>> p s l . grammar = [(‘ > ’ , ‘ a ’) , (‘ b ’ , ‘< ’) , (‘ a ’ , ‘b ’) ,
3 (‘ b ’ , ‘ a ’) , (‘ b ’ , ‘ c ’)]
4 >>> p s l . c l ean ()
5 >>> p s l . grammar
6 [(‘ b ’ , ‘< ’) , (‘ a ’ , ‘b ’) , (‘ > ’ , ‘ a ’) , (‘ b ’ , ‘ a ’)]

The method obj.fsmize() builds the FSM corresponding to the grammar.
The resulting FSM and its transitions5 can be accessed by calling fsm and
fsm.transitions attributes, respectively.

1 >>> p s l . grammar = [(‘ > ’ , ‘ a ’) , (‘ b ’ , ‘< ’) , (‘ a ’ , ‘b ’) , (‘ b ’ , ‘ a
’)]

2 >>> p s l . f smize ()
3 >>> p s l . fsm
4 <fsm . Fin i teStateMachine ob j e c t at 0x10380e470>
5 >>> p s l . fsm . t r a n s i t i o n s
6 [((‘ > ’ ,) , ‘ a ’ , (‘ a ’ ,)) , ((‘ b ’ ,) , ‘< ’ , (‘ < ’ ,)) , ((‘ a ’ ,) , ‘b ’ , (‘ b

’ ,)) , ((‘ b ’ ,) , ‘ a ’ , (‘ a ’ ,))]

To change the polarity of the grammar, obj.change polarity() can be used.
Consider the following example, where the grammar provided above was
converted to negative.

1 >>> p s l . c h a ng e p o l a r i t y ()
2 >>> p s l . grammar
3 [(‘ a ’ , ‘ a ’) , (‘ b ’ , ‘b ’) , (‘ > ’ , ‘< ’) , (‘ a ’ , ‘< ’) , (‘ > ’ , ‘b ’)]

Lastly, obj.generate sample(n, rep) generates a sample of data with re-
spect to the given grammar. Its arguments are the number of items to
be generated (the default value is 10) and the permission to allow repeti-
tions (the default value is True). Generated data can be found under the
data sample attribute.

5Each transition is presented in the form (q, w, q′), where q is the state with the outgoing
arc, q′ is the state with the incoming arc, and w is the substring that is being read.

13

1 >>> p s l . generate sample (3 , Fa l se)
2 >>> p s l . data sample
3 [‘ abababab ’ , ‘ ab ’ , ‘ abab ’]
4 >>> p s l . generate sample (3 , True)
5 >>> p s l . data sample
6 [‘ ab ’ , ‘ abab ’ , ‘ abab ’]

4.4.2 TSL class

Positive or negative TSL grammars can be initialized in the same fashion
as the SL ones before. The crucial difference is that the grammar operates
not over the original string anymore, but over its tier. Therefore if the TSL
grammar is provided, the tier attribute needs to be listed as well.

1 >>> p t s l = PosTSL ()
2 >>> n t s l = NegTSL ()
3 >>> n t s l . grammar = [(‘ b ’ , ‘b ’)]
4 >>> n t s l . t i e r = [‘ b ’]

If the data is provided, the tier symbols can be determined using the
obj.learn tier() method from the kTSLIA algorithm designed by Jardine and
McMullin (2017). In the example below, the data shows that although the
symbol a can be found anywhere, the appearance of b is restricted, and
therefore b is included in the list of the tier symbols.

1 >>> n t s l . data = [‘ abaa ’ , ‘ aab ’ , ‘ ba ’ , ‘b ’]
2 >>> n t s l . l e a r n t i e r ()
3 >>> n t s l . t i e r
4 [‘ b ’]

If not only the tier, but the grammar also needs to be extracted, one can
use the obj.learn() method that does both. Consider the extracted grammar
for the dataset provided above. There must be only one b in the string,
therefore the resulting negative TSL grammar bans two consecutive b (*bb),
and the empty tier (*on).

1 >>> n t s l . data = [‘ abaa ’ , ‘ aab ’ , ‘ ba ’ , ‘b ’]
2 >>> n t s l . l e a rn ()
3 >>> n t s l . grammar
4 [(‘ b ’ , ‘b ’) , (‘ > ’ , ‘< ’)]
5 >>> n t s l . t i e r
6 [‘ b ’]

14

Just as before, the data sample can be generated by using the method
obj.generate sample(n, rep) that takes the same type of arguments as the one
for SL grammars. In this case, after the tier is generated, a random amount
of non-tier symbols is inserted in different positions of the tier.

1 >>> n t s l . generate sample (3 , True)
2 >>> n t s l . data sample
3 [‘ abaaa ’ , ‘b ’ , ‘ aaba ’]

In the polarity of the grammar needs to be changed, one can call the
obj.change polarity() method.

1 >>> n t s l . t i e r = [‘ b ’]
2 >>> n t s l . grammar = [(‘ > ’ , ‘< ’) , (‘ b ’ , ‘b ’)]
3 >>> n t s l . ch a n g e p o l a r i t y ()
4 >>> n t s l . grammar
5 [(‘ b ’ , ‘< ’) , (‘ > ’ , ‘b ’)]

4.4.3 SP class

The initialization of the SP class is very similar to the SL one, the only
difference is the absence of the edges attribute. In the code below, as the
data attribute, I provide the language that is intended to mean do not have
two or more b in a well-formed string.

1 >>> nsp = NegSP ()
2 >>> nsp . a lphabet = [‘ a ’ , ‘b ’]
3 >>> nsp . data = [‘ aaa ’ , ‘ aaab ’ , ‘ aabaaa ’]

Learning the desired pattern can be done by using the obj.learn() method.
Indeed, the extracted negative grammar reflects the desired pattern.

1 >>> nsp . l e a rn ()
2 >>> nsp . grammar
3 [(‘ b ’ , ‘b ’)]

As before, the method obj.generate sample(n, rep) generates the data
sample. The first argument indicates the amount of items to be generated
(10 by default), and the second one allows or prohibits repetitions (by default,
repetitions are prohibited). The generated data is stored in the data sample

attribute.

1 >>> nsp . generate sample (15)
2 >>> nsp . data sample

15

3 [‘ ’ , ‘ aba ’ , ‘ ab ’ , ‘ abaa ’ , ‘ abaaa ’ , ‘ aaaa ’ , ‘ aaba ’ , ‘b ’ , ‘ baaa ’ ,
‘ a ’ , ‘ baaaa ’ , ‘ aab ’ , ‘ ba ’ , ‘ aaa ’ , ‘ aa ’]

The method obj.scan(string) requires a string as its argument, and returns
the boolean value that indicates whether that string can be accepted or not.

1 >>> nsp . scan (‘ abaaa ’)
2 True
3 >>> nsp . scan (‘ aaabaaaab ’)
4 False

The generator that corresponds to the SP class can be represented as
a family of FSMs, see Heinz and Rogers (2013). obj.fsmize() builds the
corresponding family of FSMs, and the transitions of each of the constructed
FSMs can be accessed in the following fashion.

1 >>> nsp . f smize ()
2 >>> f o r i in nsp . fsm . fami ly :
3 pr in t (i . t r a n s i t i o n s)
4 [[0 , ‘ a ’ , 1] , [0 , ‘b ’ , 0] , [1 , ‘ a ’ , 1] , [1 , ‘b ’ , 1]]
5 [[0 , ‘b ’ , 1] , [0 , ‘ a ’ , 0] , [1 , ‘ a ’ , 1]]

Lastly, if the polarity of the grammar needs to be changed, one can apply
the obj.change polarity() method.

1 >>> nsp . grammar
2 [(‘ b ’ , ‘b ’)]
3 >>> nsp . c ha n g e p o l a r i t y ()
4 >>> nsp . grammar
5 [(‘ a ’ , ‘ a ’) , (‘ a ’ , ‘b ’) , (‘ b ’ , ‘ a ’)]

5 Implementation

In the current section, I provide a more detailed discussion of attributes and
methods that are available in the package, as well as explain the structure of
the kist toolkit.

5.1 Architecture

In this section, I describe the architecture of the kist toolkit. I outline the
basic classes that are used in the implementation of the package, and define
relations between them. Figure 3 shows the class diagram of the toolkit.

16

Gram

alphabet : list (used symbols)
grammar : list (list of n-grams)
k : int (locality domain)
data : list (provided data)

extract alphabet (extracts the alphabet)

PosSL/NegSL

all attributes of Gram
edges : list (delimiters)
data sample : list (generated data)
fsm : FSM (corresponding FSM)

all methods of Gram
learn (extracts positive SL grammar)
generate sample (generates data sample)
scan (checks well-formedness of a string)
clean (detects useless n-grams in the grammar)
change polarity (makes the grammar negative)
fsmize (creates corresponding FSM)

PosSP/NegSP

all attributes of Gram
data sample : list (generated data)
fsm : FSM (corresponding FSM)

the same methods as PosSL/
NegSL but modified to accommo-
date SP classes

PosTSL/NegTSL

all attributes of PosSL
tier : list (list of tier symbols)

all methods of PosSL
learn tier (detects tier symbols)

FiniteStateMachine

transitions : list (list of transitions)

sl states (SL → FSM)
trim fsm (trims FSM’s states)

FSMFamily

family : list (list of FSMs)

run all (run all FSMs)

corresponding acceptor

corresp. acceptor

corresp. acceptor

Figure 3: kist class diagram

Gram
The abstract class in this package is Gram. It defines the basic properties
of the grammar at a level that is not different for (T)SL or SP gram-

17

mars. Such properties include alphabet, grammar, k and data attributes
and obj.extract alphabet() method, see the next sections for details.

PosSL/NegSL
The two classes of positive and negative SL grammars (PosSL and NegSL) in-
herit everything from the general Gram class, and add attributes and methods
that are specific to the local approach. The acceptor corresponding to these
grammars is implemented in FiniteStateMachine that is used for scanning
a string or generating a data sample.

PosTSL/NegTSL
The classes of positive and negative TSL grammars (PosTSL and NegTSL) are
based on SL classes of the corresponding polarity, but introduce tier as one
of the specific attributes. The corresponding acceptor is also a finite states
machine that operates over the tier representation of a given string.

PosSP/NegSP
The classes of positive and negative SP grammars (PosSP and NegSP) have
different basic relations – precedence instead of successor – and therefore
are not related to the local classes. PosSP and NegSP also inherit basic
information from the Gram class. But to decide well-formedness of a string,
now we need to use a family of finite states machines: FSMFamily. The SP
grammar corresponds to a family of FSMs, and the string is well-formed with
respect to that grammar if and only if it is successfully accepted by every
automaton in the family6.

FiniteStateMachine
This class implements a basic representation of a finite state machine with
only one attribute – a list of transitions.

FSMFamily
FSMFamily represents a collection of FiniteStateMachine objects, and has
a method that allows to run all members of the family at once: this is needed
to decide well-formedness of a string with respect to a SP grammar.

5.2 Attributes

In this section, I define attributes of language-related and generator-related
classes. The table below lists the attributes of classes related to the grammar,
i.e. Gram, PosSL/NegSL, PosTSL/NegTSL and PosSP/NegSP.

18

Attributes of language-related classes:
attribute description relevant classes

1 alphabet
Alphabet is a finite collection
of symbols that the grammar
is operating with.

Gram, PosSL/NegSL,
PosTSL/NegTSL,
PosSP/NegSP

Table 1: Attributes of the language-related classes.

Attributes of language-related classes:
attribute description relevant classes

2 grammar
Grammar refers to a list of
banned or allowed substrings
or subsequences.

Gram, PosSL/NegSL,
PosTSL/NegTSL,
PosSP/NegSP

3 k

The locality window k refers
to the longest substring or
subsequence in a grammar.
Default value: 2.

Gram, PosSL/NegSL,
PosTSL/NegTSL,
PosSP/NegSP

4 data
This attribute stores the data
based on which kist extracts
the grammar of intended type.

Gram, PosSL/NegSL,
PosTSL/NegTSL,
PosSP/NegSP

5 edges

For grammars operating with
the notion of locality, edge
symbols are necessary in
order to determine initial or
final elements of a string.
Default value: [‘>’, ‘<’].

PosSL/NegSL,
PosTSL/NegTSL

6 data sample
The data sample generated
by kist is being stored in this
attribute.

PosSL/NegSL,
PosTSL/NegTSL,
PosSP/NegSP

7 fsm
Generating device that
corresponds to the grammar is
stored in this attribute.

PosSL/NegSL,
PosTSL/NegTSL,
PosSP/NegSP

8 tier
In TSL classes, tier contains
the list of tier symbols.

PosTSL/NegTSL

Table 2: Attributes of the language-related classes.

19

By default, the value of the attribute k is 2, and the edges that are use
by kist are [‘>’, ‘<’] unless redefined. In order to perform the grammar
extraction, data is the required attribute, and in the case of scanning or
sample generation, the grammar attribute must not be empty.

Another table below describes attributes of the generator-related classes,
i.e. FiniteStateMachine and FSMFamily. A single FSM corresponds to SL
and TSL languages, and a family of ones is required to accept SP languages.

Attributes of generator-related classes:
attribute description relevant classes

9 transitions
List of transitions of a finite
state machine.

FiniteStateMachine

10 family
A collection of finite state
machines.

FSMFamily

Table 3: Attributes of the generator-related classes.

5.3 Methods

In this section, I present methods of each one of the classes discussed above
more elaborately, and explain the logic behind their implementations. Each
method is either user-friendly, i.e. meant to be used by a user; or internal,
i.e. written to outsource certain tasks to a sub-function.

5.3.1 SL classes

Here I discuss methods defined for positive and negative SL grammar classes.

obj.extract alphabet() [user-friendly]
This methods extracts alphabet from the data or the grammar, depending
on what is provided. No arguments are required by this method.

1 >>> a = PosSL ()
2 >>> a . data = [’ abab ’ , ’ bac ’]
3 >>> a . e x t r a c t a l p h a b e t ()
4 >>> a . a lphabet
5 [’ a ’ , ’b ’ , ’ c ’]

6Jeffrey Heinz, p.c.

20

obj.learn() [user-friendly]
This method extracts n-grams from the provided data, and updates the
alphabet attribute. If the data attribute is empty, the error is raised. As
for the method-internal arguments, nothing is required.

1 >>> a . l e a rn ()
2 >>> a . grammar
3 [(’ > ’ , ’ a ’) , (’ b ’ , ’< ’) , (’ > ’ , ’b ’) , (’ a ’ , ’ c ’) , (’ b ’ , ’ a ’) ,

(’ c ’ , ’< ’) , (’ a ’ , ’b ’)]

obj.generate sample(n=10, rep=True) [user-friendly]
This method generates a data sample with respect to a given grammar. Two
arguments can be provided: n is the number of strings to be generated (by
default, this number is 10), and rep allows or prohibits repetitions (by default,
the repetitions are allowed). As the result, k random strings are generated.

1 >>> b = NegSL ()
2 >>> b . a lphabet = [’ a ’ , ’b ’]
3 >>> b . grammar = [(’ a ’ , ’ a ’) , (’ b ’ , ’b ’)]
4 >>> b . generate sample (n=5, rep=True)
5 >>> b . data sample
6 [’ ba ’ , ’b ’ , ’ ’ , ’b ’ , ’ baba ’]

If the parameter rep is False, then the generation process is repeated until
the number of generated unique strings is equal to n.

1 >>> b . generate sample (n=5, rep=False)
2 >>> b . data sample
3 [’ ’ , ’ a ’ , ’ ab ’ , ’ ababa ’ , ’b ’]

Generation is performed by constructing a FSM that corresponds to the
grammar, and then creating a state map that indicates which symbols can
serve as a continuation of a k−1 prefix, where k is the locality of the grammar.
See the obj.state map() method for details.

obj.scan(string) [user-friendly]
This methods scans the string that is passed as an argument, and tells
whether it is well-formed. The resulting value is determined based on whether
the set of n-grams of the string is a subset of the grammar if the grammar is
positive. If the grammar is negative, then the string is considered well-formed
if none of the elements of the grammar are found in the string.

1 >>> a . grammar = [(’ > ’ , ’ a ’) , (’ b ’ , ’< ’) , (’ a ’ , ’b ’) , (’ b ’ , ’ a ’)]
p o s i t i v e grammar

2 >>> b . grammar = [(’ a ’ , ’ a ’) , (’ b ’ , ’b ’)] # negat ive grammar

21

3 >>> a . scan (’ aabb ’)
4 False
5 >>> b . scan (’ aabb ’)
6 False
7 >>> a . scan (’ abab ’)
8 True
9 >>> b . scan (’ abab ’)

10 True

obj.clean() [user-friendly]
This method checks whether all n-grams of the grammar are “useful”. By
“useful”, I mean that they can be somehow used in the grammar. For ex-
ample, in the positive SL grammar {>a, ab, ba, b<, ca}, the bigram ca is
useless: there are no transitions that lead to a state from which the symbol
c can be read.

1 >>> a = PosSL ()
2 >>> a . grammar = [(’ > ’ , ’ a ’) , (’ a ’ , ’b ’) , (’ b ’ , ’ a ’) , (’ c ’ , ’ a ’) ,

(’ b ’ , ’< ’)]
3 >>> a . c l ean ()
4 >>> a . grammar
5 [(’ b ’ , ’< ’) , (’ a ’ , ’b ’) , (’ > ’ , ’ a ’) , (’ b ’ , ’ a ’)]

If there are no “useless” n-grams in the grammar, the grammar is left
unchanged.

1 >>> a . grammar
2 [(’ b ’ , ’< ’) , (’ a ’ , ’b ’) , (’ > ’ , ’ a ’) , (’ b ’ , ’ a ’)]
3 >>> a . c l ean ()
4 >>> a . grammar
5 [(’ b ’ , ’< ’) , (’ a ’ , ’b ’) , (’ > ’ , ’ a ’) , (’ b ’ , ’ a ’)]

This method works by running the corresponding FSM to the SL grammar
from the start to the end and seeing which states can be accessed. Then
the automaton is run in the opposite direction, and the states that can be
accessed are marked again. The corresponding automaton is then trimmed:
only the states that were marked twice remain, see obj.trim fsm() method.
The resulting grammar is constructed based on the trimmed version of the
automaton.

obj.change polarity() [user-friendly]
This method changes the polarity of the grammar to the opposite one by
creating all possible k-grams based on the alphabet of the language, and
then taking the relative complement of the original grammar.

22

1 >>> b . grammar
2 [(’ a ’ , ’ a ’) , (’ b ’ , ’b ’)]
3 >>> b . c h a ng e p o l a r i t y ()
4 >>> b . grammar
5 [(’ > ’ , ’< ’) , (’ b ’ , ’ a ’) , (’ a ’ , ’< ’) , (’ a ’ , ’b ’) , (’ b ’ , ’< ’) ,

(’ > ’ , ’b ’) , (’ > ’ , ’ a ’)]

In order to be consistent, the internal type name of the class is also
rewritten to the opposite one.

1 >>> b . c l a s s
2 <c l a s s ’ ma in . NegSL’>
3 >>> b . c h a ng e p o l a r i t y ()
4 >>> b . c l a s s
5 <c l a s s ’ ma in . PosSL’>

obj.generate item() [internal]
This internal method returns a well-formed word with respect to the provided
grammar. It works by constructing a state map and then moving through it,
see obj.state map() method explained later.

1 >>> b . grammar
2 [(’ a ’ , ’ a ’) , (’ b ’ , ’b ’)] # negat ive grammar
3 >>> b . gene ra te i t em ()
4 ’ babab ’

obj.state map() [internal]
The method obj.state map() creates a dictionary where every prefix of the
k − 1 length is a key, and its value is a list of symbols that can follow this
prefix. Basically, this automata represents the list of possible transitions
without running the actual automaton.

1 >>> b . grammar
2 [(’ a ’ , ’ a ’) , (’ b ’ , ’b ’)] # negat ive grammar
3 >>> b . state map ()
4 { ’ a ’ : [’ < ’ , ’b ’] , ’b ’ : [’ a ’ , ’ < ’] , ’ > ’ : [’ < ’ , ’b ’ , ’ a ’] }

This dictionary is constructed by generating all possible k − 1 sequences
with respect to the given grammar, and then passing them though the au-
tomaton corresponding to the grammar. The list of possible continuations is
created by listing all possible moves from the state that corresponds to the
prefix under consideration.

obj.fsmize() [internal]
This method constructs a finite state machine based on the SL grammar. Ev-
ery transition of the FSM corresponds to a n-gram of the positive grammar.

23

The transitions are of the following shape: 〈q0, w, q1〉, where q0 and q1 are
the states corresponding to k−1 prefix and suffix of the n-gram respectively,
and w is the last symbol of the n-gram.

1 >>> a . grammar = [(’ b ’ , ’< ’) , (’ a ’ , ’b ’) , (’ > ’ , ’ a ’) , (’ b ’ , ’ a ’)]
p o s i t i v e grammar

2 >>> a . f smize ()
3 >>> a . fsm . t r a n s i t i o n s
4 [((’ b ’ ,) , ’< ’ , (’ < ’ ,)) , ((’ a ’ ,) , ’b ’ , (’ b ’ ,)) , ((’ > ’ ,) , ’ a ’ , (’ a

’ ,)) , ((’ b ’ ,) , ’ a ’ , (’ a ’ ,))]

For the sake of simplicity while running the automaton, even when the
grammar is negative, the FSM corresponds to the positive version of the
grammar.

1 >>> b . grammar = [(’ a ’ , ’ a ’) , (’ b ’ , ’b ’)] # negat ive grammar
2 >>> b . f smize ()
3 >>> b . fsm . t r a n s i t i o n s
4 [((’ > ’ ,) , ’< ’ , (’ < ’ ,)) , ((’ b ’ ,) , ’ a ’ , (’ a ’ ,)) , ((’ a ’ ,) , ’< ’ ,

(’ < ’ ,)) , ((’ a ’ ,) , ’b ’ , (’ b ’ ,)) , ((’ b ’ ,) , ’< ’ , (’ < ’ ,)) ,
((’ > ’ ,) , ’b ’ , (’ b ’ ,)) , ((’ > ’ ,) , ’ a ’ , (’ a ’ ,))]

obj.annotate data(string, k) [internal]
In order to process a string in a local fashion, it needs to be annotated with
start and end symbols, and this is the task of the obj.annotate data(string,
k) method. The argument string is the string to be annotated, and k is the
locality of the grammar. As the output, the string is annotated with k − 1
start and end symbols.

1 >>> a . annotate data (’ subregu lar ’ , 2)
2 ’> subregu lar <’

obj.ngramize data(k, strings) [internal]
This method takes a list of strings and a k-value as arguments, and returns
a list of k-grams that are used in the given strings.

1 >>> a . ngramize data (2 , [’ ’ , ’ ab ’])
2 [(’ > ’ , ’< ’) , (’ a ’ , ’b ’) , (’ b ’ , ’< ’) , (’ > ’ , ’ a ’)]

obj.ngramize item(string, k) [internal]
This method reads a string, and returns a list of k-grams that this string
consists of.

1 >>> a . ngramize item (’ abcd ’ , 2)
2 [(’ b ’ , ’ c ’) , (’ a ’ , ’b ’) , (’ c ’ , ’d ’)]

24

obj.build ngrams(transitions) [internal]
This method takes a list of transitions as input, and returns the correspond-
ing grammar as output. It is useful for cleaning the grammar: after the
corresponding FSM is trimmed, this function is called to construct a clean
version of the grammar based on the FSA transitions.

1 >>> a . fsm . t r a n s i t i o n s
2 [((’ b ’ ,) , ’< ’ , (’ < ’ ,)) , ((’ a ’ ,) , ’b ’ , (’ b ’ ,)) , ((’ > ’ ,) , ’ a ’ , (’ a

’ ,)) , ((’ b ’ ,) , ’ a ’ , (’ a ’ ,))]
3 >>> a . bui ld ngrams (a . fsm . t r a n s i t i o n s)
4 [(’ b ’ , ’< ’) , (’ a ’ , ’b ’) , (’ > ’ , ’ a ’) , (’ b ’ , ’ a ’)]

5.3.2 TSL classes

For the TSL classes, all methods apart from the ones discussed in this section
are the same as the ones presented in the previous one (5.3.1 “SL classes”).

obj.learn() [user-friendly]
This method extracts the list of tier symbols and the tier grammar from the
given data. The algorithm based on which the method is designed is based
on the one by Jardine and McMullin (2017).

At the first step, the list of tier symbols is being determined, and then
the list of n-gramized tier sequences is extracted. If the grammar is positive,
this list is the TSL grammar.

1 >>> p . data = [’ abaa ’ , ’ aab ’ , ’ ba ’ , ’b ’]
2 >>> p . l e a r n ()
3 >>> p . grammar
4 [(’ > ’ , ’b ’) , (’ b ’ , ’< ’)]

If the grammar is negative, then the complement of that list is taken.

1 >>> n . data = [’ abaa ’ , ’ aab ’ , ’ ba ’ , ’b ’]
2 >>> n . l e a r n ()
3 >>> n . grammar
4 [(’ > ’ , ’< ’) , (’ b ’ , ’b ’)]

obj.scan(string) [user-friendly]
This methods scans the string that needs to be passed as an argument, and
tells whether it is well-formed with respect to the provided grammar. The
resulting value is determined based on whether the set of n-grams of the tier
representation of the string is a subset of the grammar if the grammar is
positive. If the grammar is negative, then the string is well-formed if none
of the elements of the grammar are found on the tier of the string.

25

1 >>> p . grammar = [(’ > ’ , ’b ’) , (’ b ’ , ’< ’)] # p o s i t i v e grammar
2 >>> p . scan (’ abba ’)
3 False
4 >>> p . scan (’ aba ’)
5 True

obj.generate item() [internal]
This method first generates a well-formed tier sequence of a word using the
parental obj.generate item() method that is inherited from the SL class. Af-
terwards, non-tier symbols are randomly inserted in-between the generated
tier symbols.

1 >>> p . grammar = [(’ > ’ , ’b ’) , (’ b ’ , ’< ’)] # p o s i t i v e grammar
2 >>> p . gene ra te i t em ()
3 ’ aaaba ’

obj.erasing function() [internal]
Given the provided data and tier attributes, this method returns the list
of tier sequences of the given data.

1 >>> p . data = [’ abaa ’ , ’ aaa ’]
2 >>> p . t i e r = [’ b ’]
3 >>> p . e r a s i n g f u n c t i o n ()
4 [’ ’ , ’b ’]

obj.tier image(string, tier) [internal]
Given a string and a list of tier symbols, this method returns the copy of the
string with all its non-tier symbols erased.

1 >>> p . t i e r = [’ b ’]
2 >>> p . t i e r i m a g e (’ ababa ’ , p . t i e r)
3 ’ bb ’
4 >>> p . t i e r i m a g e (’ aaaa ’ , p . t i e r)
5 ’ ’

obj.test insert(symbol, ngrams, ngrams less) [internal]
This method is one of the two tests that a symbol needs to pass in order to
be removed from the tier alphabet. Given a symbol and all k+1 -grams that
contain it, one should try to remove the given symbol from them. If all of
the resulting k -grams can be found in the data, this symbol might be not a
tier-symbol, but if it is not true, the symbol under consideration is definitely
a tier symbol, see Jardine and McMullin (2017).

26

obj.test remove(symbol, ngrams, ngrams more) [internal]
This method is the second one of the two tests that a symbol needs to pass
in order to be removed from the tier alphabet. Given the symbol and all
k-1 -grams of the data, one should try to insert this symbol in all positions of
those k-1 -grams. If all of the resulting k -grams can be found in the data, this
symbol might be not a tier-symbol, but if it is not true, the symbol under
consideration is a tier symbol, see Jardine and McMullin (2017).

5.3.3 SP classes

This section discusses the methods that are defined for SP languages. Meth-
ods obj.generate sample(n, rep), obj.extract alphabet() and obj.change polarity()
are the same as discussed before, therefore I do not repeat them here.

obj.learn() [user-friendly]
This method extracts all possible or impossible subsequences from the data
depending on the polarity of the intended grammar, therefore the data at-
tribute must not be empty. If the grammar is positive, then it simply extracts
all k-piecewise subsequences from the data.

1 >>> a = PosSP ()
2 >>> a . data = [’ aaabaa ’]
3 >>> a . l e a rn ()
4 >>> a . grammar
5 [(’ a ’ , ’ a ’) , (’ a ’ , ’b ’) , (’ b ’ , ’ a ’)]

If the grammar is negative, the complement of possible k-piecewise sub-
sequences is taken.

1 >>> b = NegSP ()
2 >>> b . data = [’ aaabaa ’]
3 >>> b . l e a r n ()
4 >>> b . grammar
5 [(’ b ’ , ’b ’)]

obj.subsequences(string) [internal]
This method extracts all subsequences of the length k out of the given string.7

1 >>> b . subsequences (’ subreg ’)
2 [[’ s ’ , ’u ’] , [’ s ’ , ’b ’] , [’ s ’ , ’ r ’] , [’ s ’ , ’ e ’] , [’ s ’ , ’ g ’] , [’ u

’ , ’b ’] , [’ u ’ , ’ r ’] , [’ u ’ , ’ e ’] , [’ u ’ , ’ g ’] , [’ b ’ , ’ r ’] , [’ b
’ , ’ e ’] , [’ b ’ , ’ g ’] , [’ r ’ , ’ e ’] , [’ r ’ , ’ g ’] , [’ e ’ , ’ g ’]]

7Every position in a string can be represented as a layer of a graph, and the task is to
find all paths within this graph that are going through exactly k nodes.

27

obj.fsmize() [internal]
This method creates a FSM family that corresponds to a given SP grammar.
First, it makes sure that the grammar is extracted. Second, it creates the
template of the constructing family8. Third, it runs grammar sequences
through the states of each automaton in the family marking the transitions
that were taken. Lastly, it creates the copy of the FSM family where all the
transitions that were never taken are trimmed away.

The transitions of every machine within the corresponding FSM family
can be viewed in the following way:

1 >>> b . f smize ()
2 >>> f o r i in b . fsm . fami ly :
3 pr in t (i . t r a n s i t i o n s)
4 [[0 , ’ a ’ , 1] , [0 , ’b ’ , 0] , [1 , ’ a ’ , 1] , [1 , ’b ’ , 1]]
5 [[0 , ’b ’ , 1] , [0 , ’ a ’ , 0] , [1 , ’ a ’ , 1]]

obj.scan(string) [user-friendly]
This methods scans the string that is passed as an argument, and says
whether it is well-formed. A string is well-formed if and only if every au-
tomaton in the FSM family can accept it.

1 >>> b . scan (’ ababaa ’)
2 False
3 >>> b . scan (’ abaa ’)
4 True

obj.generate item() [internal]
This function generates a well-formed item with respect to the given gram-
mar. Until it is randomly selected to stop generating the sequence, it ran-
domly adds symbols to the string that is being generated, and at every step
it checks that the resulting string is still well-formed by passing it through
the obj.scan(string) method.

1 >>> n . gene ra te i t em ()
2 ’ aaaaba ’

8In total, there are |Σk−1| FSAs constructed. See Heinz and Rogers (2013) on the
algorithm of the FSM family construction. The current implementation fully relies on this
algorithm, and the only modification is that now it is closed under subsequence in order
to improve the learning results.

28

5.3.4 FSM class

In this and the next sections, I do not show code snippets of the method calls,
because the discussed functionality is designed to be used within (T)SL or SP
classes, and the access to these methods without defining a language-related
task is quite complicated. More details on the implementation are given in
the doc-strings of the methods.

obj.sl states(grammar) [internal]
This method takes a strictly local grammar as input, and creates an FSM
with the list of transitions that corresponds to the given grammar. This
function is employed by obj.fsmize() of the SL and TSL classes.

obj.sp template(seq, alphabet, k) [internal]
It creates the FSM family template for a given SP grammar’s configuration.
Given the sequence of symbols to be represented in a current FSM, alpha-
bet, and k, this method creates a FSM with the transitions of the shape
〈q0, w, q1, Bool〉, where q0 and q1 are the states, w is one of the symbols from
the seq, and Bool is a boolean value that indicates whether the transition
was taken or not. Upon initialization, all Bool are set to False. This method
is used by obj.fsmize() within the SP class.

obj.run sp(string) [internal]
This method runs a string through the SP automaton and returns a boolean
value depending on the well-formedness of the string with respect to the
machine.

obj.run learn sp(string) [internal]
It passes the given string through the template automaton, and marks the
transitions that were taken by that string. This is required in order to gen-
erate an FSM family corresponding to the intended SP grammar.

obj.sp clean() [internal]
This method trims away the transitions that were never taken. It is required
in order to construct an FSM family for the intended SP grammar.

obj.trim fsm(markers=[‘>’, ‘<’]) [internal]
This method detects useless states of the FSM and trims them away. A state
is considered useless if there is either no way to enter this state (i.e. to come
from the initial state), or no way to exit from it (i.e. to reach the final state
after passing through that state). Calling this method results in trimming
useless states and transitions within the current FSM.

29

obj. accessible states(transitions, markers) [internal]
This method runs from the initial (or, if the machine is mirrored, final) state
of the finite state machine, and detects which states can be reached from
there. Other states are being trimmed away.

5.3.5 FSM family class

obj.run all(string) [internal]
This method passes the given string through all the automata within the FSM
family simultaneously, and returns True if all of the machines can accept that
string, otherwise it returns False, i.e. rejects the string.

6 Conclusion and future work

In this paper, I presented a Python toolkit kist that contains instruments
for working with subregular languages. Currently, the toolkit includes tools
for working with subregular classes of strictly local, tier-based strictly local,
and strictly piecewise languages. More precisely, kist contains learners,
scanners, sample generators, and several other tools.

At the current moment, I am improving the performance of already imple-
mented tools, and adding probabilistic versions to every one of the grammars
listed above. Apart from extending the toolkit, I am turning it into a Python
package. In the nearest future, I will add tools that allow one to work with
subregular transducers (Chandlee and Heinz, 2018).

The importance of such a toolkit can be demonstrated by the wide use and
fast development of subregular techniques. Their applications can be found
in linguistics, robotics, and neural network research. However, it is difficult
to manually generate or analyze large amounts of data and, therefore, this
toolkit automates tasks of researchers that work in related areas.

References

Alëna Aksënova and Aniello De Santo. in press. Strict locality in morphological derivations.
In Proceedings of the 53rd meeting of Chicago Linguistics Society (CLS 53).

Alëna Aksënova and Sanket Deshmukh. 2018. Formal restrictions on multiple tiers. In
Proceedings of the Society for Computation in Linguistics (SCiL) 2018, pages 64–73.
Association for Computational Linguistics.

30

https://doi.org/10.7275/R5K64G8S

Alëna Aksënova, Thomas Graf, and Sedigheh Moradi. 2016. Morphotactics as tier-based
strictly local dependencies. In Proceedings of the 14th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology, and Morphology, pages 121–130. As-
sociation for Computational Linguistics.

Enes Avcu, Chihiro Shibata, and Jeffrey Heinz. 2017. Subregular complexity and deep
learning. In Proceedings of the Conference on Logic and Machine Learning in Natural
Language.

Jane Chandlee. 2017. Computational locality in morphological maps. Morphology, 27:599–
641.

Jane Chandlee and Jeffrey Heinz. 2018. Strict locality and phonological maps. Linguistic
Inquiry, 49(1):23–60.

Aniello De Santo and Thomas Graf. 2017. Structure sensitive tier projection: Applications
and formal properties. Manuscript. Stony Brook University.

Aniello De Santo, Thomas Graf, and John Drury. 2017. Evaluating subregular distinctions
in the complexity of generalized quantifiers. Poster presented at the ESSLLI Workshop
on Quantifiers and Determiners (QUAD 2017), July 17 – 21, University of Toulouse,
France.

Jie Fu, Jeffrey Heinz, and Herbert G. Tanner. 2011. An algebraic characterization of
strictly piecewise languages. In Theory and Applications of Models of Computation,
volume 6648 of Lecture Notes in Computer Science, pages 252–263. Springer Berlin/Hei-
delberg.

Brian Gainor, Regine Lai, and Jeffrey Heinz. 2012. Computational characterizations of
vowel harmony patterns and pathologies. In The Proceedings of the 29th West Coast
Conference on Formal Linguistics, pages 63–71.

Thomas Graf. 2017. Subregular morpho-semantics: The expressive limits of monomor-
phemic quantifiers. Invited talk, December 15, Rutgers University, New Brunswick,
NJ.

Thomas Graf and Jeffrey Heinz. 2016. Tier-based strict locality in phonology and syntax.
Manuscript. Stony Brook University and University of Delaware.

Jeffrey Heinz. 2011a. Computational phonology part I: Grammars, learning, and the
future. Language and Linguistics Compass, 5(4):140–152.

Jeffrey Heinz. 2011b. Computational phonology part II: Grammars, learning, and the
future. Language and Linguistics Compass, 5(4):153–168.

Jeffrey Heinz. 2015. The computational nature of phonological generalizations.
Manuscript. University of Delaware.

31

https://doi.org/10.18653/v1/W16-2019
https://doi.org/10.18653/v1/W16-2019
https://arxiv.org/pdf/1705.05940.pdf
https://arxiv.org/pdf/1705.05940.pdf
https://link.springer.com/epdf/10.1007/s11525-017-9316-9?author_access_token=vohhMGlEL_qur6kZS0ZGh_e4RwlQNchNByi7wbcMAY6Bo1vvwhLBUdEQJLw5g67vhVqdj9pWG9YUsv2WUz5z6qxaachuMZ2Ezp-5_cexwpQ5VnrmrIOB4Kx1t4NAwGjbZCUoS-XBDj3sg3Ll1-Yesw%3D%3D
https://aniellodesanto.github.io/publications/ESSLI_Presentation.pdf
https://aniellodesanto.github.io/publications/ESSLI_Presentation.pdf
http://jeffreyheinz.net/papers/Fu-HeinzEtAl-2011-ACSPL.pdf
http://jeffreyheinz.net/papers/Fu-HeinzEtAl-2011-ACSPL.pdf
http://www.lingref.com/cpp/wccfl/29/paper2688.pdf
http://www.lingref.com/cpp/wccfl/29/paper2688.pdf
http://thomasgraf.net/doc/talks/Graf17Rutgerstalk.pdf
http://thomasgraf.net/doc/talks/Graf17Rutgerstalk.pdf

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local con-
straints for phonology. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, pages 58–64, Portland, USA. Association for Computational
Linguistics.

Jeffrey Heinz and James Rogers. 2013. Learning subregular classes of languages with
factored deterministic automata. In Proceedings of the 13th Meeting on the Mathematics
of Language (MoL 13), pages 64–71, Sofia, Bulgaria. Association for Computational
Linguistics.

Adam Jardine. 2016. Computationally, tone is different. Phonology, 33(2):247–283.

Adam Jardine and Kevin McMullin. 2017. Efficient learning of tier-based strictly k-local
languages. Lecture Notes in Computer Science, 10168:64–76.

Robert McNaughton and Seymour A. Papert. 1971. Counter-Free Automata (M.I.T. Re-
search Monograph No. 65). The MIT Press.

Chetan Rawal, Herbert G. Tanner, and Jeffrey Heinz. 2011. (Sub)regular robotic lan-
guages. In IEEE Mediterranean Conference on Control and Automation, pages 321–
326.

James Rogers. 2018. On the cognitive complexity of phonotactic constraints. Slides of a
Stony Brook Colloquium. March 23.

Department of Linguistics
Stony Brook University
Stony Brook, NY 11794-4376
alena.aksenova@stonybrook.edu

32

http://www.aclweb.org/anthology/P/P11/P11-2011.pdf
http://www.aclweb.org/anthology/P/P11/P11-2011.pdf
http://www.aclweb.org/anthology/W13-3007
http://www.aclweb.org/anthology/W13-3007
http://rci.rutgers.edu/~aj591/files/jardinecomptone-short.pdf
http://rci.rutgers.edu/~aj591/files/jardinemcmullin2016tslk.pdf
http://rci.rutgers.edu/~aj591/files/jardinemcmullin2016tslk.pdf
http://jeffreyheinz.net/papers/Rawal-TannerEtAl-2011-SRL.pdf
http://jeffreyheinz.net/papers/Rawal-TannerEtAl-2011-SRL.pdf
https://cs.earlham.edu/~jrogers/slides/stonybrook.ho.pdf

	Introduction
	Relevance
	Linguistics
	Neural networks
	Robotics

	Theoretical background
	Strictly local
	Tier-based strictly local
	Strictly piecewise

	Quick start guide
	Installing the package
	Overview of the package
	Quick examples
	Detailed examples
	SL class
	TSL class
	SP class

	Implementation
	Architecture
	Attributes
	Methods
	SL classes
	TSL classes
	SP classes
	FSM class
	FSM family class

	Conclusion and future work

